Trichoplusia ni
not annotated - annotated - LINNAEUS only
21199020
Genetic analysis of the xenobiotic resistance-associated ABC gene subfamilies of the Lepidoptera.
Some ATP-binding cassette (ABC) transporters of subfamilies B, C and G confer resistance to xenobiotics including insecticides. We identified genes of these subfamilies expressed by the lepidopterans Trichoplusia ni and Bombyx mori. The B. mori genome includes eight, six and 13 ABC-B, -C and -G genes, respectively, which encode P-glycoprotein, multidrug resistance protein, MRP, and breast cancer resistance protein, BCRP, homologues. Among the ABC-C and -G subfamilies, gene duplication contributes to protein diversity. We have identified three ABC-B and two ABC-C T. ni genes. Analyses of the T. ni MRP (TrnMRP) revealed unique features, including the potential for TrnMRP4 hyperglycosylation and the alternative splicing of TrnMRP1. Taken together, these attributes of moth multidrug resistance-associated ABCs may confer distinct functional capacities to xenobiotic efflux.
21477200
Baculovirus cyclobutane pyrimidine dimer photolyases show a close relationship with lepidopteran host homologues.
Cyclobutane pyrimidine dimer (CPD) photolyases repair ultraviolet (UV)-induced DNA damage using blue light. To get insight in the origin of baculovirus CPD photolyase (phr) genes, homologues in the lepidopteran insects Chrysodeixis chalcites, Spodoptera exigua and Trichoplusia ni were identified and characterized. Lepidopteran and baculovirus phr genes each form a monophyletic group, and together form a well-supported clade within the insect photolyases. This suggests that baculoviruses obtained their phr genes from an ancestral lepidopteran insect host. A likely evolutionary scenario is that a granulovirus, Spodoptera litura GV or a direct ancestor, obtained a phr gene. Subsequently, it was horizontally transferred from this granulovirus to several group II nucleopolyhedroviruses (NPVs), including those that infect noctuids of the Plusiinae subfamily.